Search results for "Piezoresistive effect"

showing 4 items of 4 documents

Bending Sensors Based on Thin Films of Semitransparent Bithiophene-Fulleropyrrolidine Bisadducts

2020

In this study, a novel bithiophene‐fulleropyrrolidine bisadducts system (bis‐Th2PC 60 ) was synthesized and electropolymerized by chronoamperometry onto flexible ITO/PET substrates. The resulting semitransparent thin film was characterized by XPS, FT‐IR, cyclic voltammetry and optical techniques, confirming the good outcome of the electropolymerization process. AFM investigations permitted to highlight an inherent disordered granular morphology, in which the grain‐to‐grain separation depends upon the application of bending. The electrical resistance of the thin film was characterized as function of bending (in the range 0°‐90°), showing promising responsivity to low bending angles (10°‐30°)…

Materials scienceFullerenepiezoresistive sensors010405 organic chemistrySettore ING-INF/01General ChemistryBendingChronoamperometrybending010402 general chemistry01 natural sciencesPiezoresistive effect0104 chemical sciencesElectrical resistance and conductanceX-ray photoelectron spectroscopythin filmsthiophenesconjugated polymersCyclic voltammetryComposite materialThin filmBending conjugated polymers piezoresistive sensors thin films thiophenes
researchProduct

Vibration Detector based on GMR Sensors

2007

Up to now, vibrations have been mostly sensed by measuring displacement, velocity and acceleration. The most common types of vibration sensors are piezoelectric, capacitive, null-balance, strain gage, optoelectronic, resonance beam or piezoresistive. We present a low cost and low power vibration detector based on the measurement of magnetic field variations induced in a recent SS501 GMR magnetic sensor, which has never been applied for that. Vibrations on small ferromagnetic pieces disturb the Earth's magnetic field. These weak perturbations can be detected and measured over the assumed constant Earth's magnetic field, which is uniform over a wide area. A novel array configuration of 3 half…

PhysicsVibrationEarth's magnetic fieldMagnetoresistancebusiness.industryCapacitive sensingAcousticsDetectorElectrical engineeringbusinessPiezoresistive effectStrain gaugeMagnetic field2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007
researchProduct

Vibration Detector Based on GMR Sensors

2009

Up to now, vibrations have mostly been sensed by measuring displacement, velocity, and acceleration. The most common types of vibration sensors are piezoelectric, capacitive, null-balance, strain gage, optoelectronic, resonance beam, and piezoresistive. We present a low-cost and low-power vibration detector based on the measurement of magnetic field variations induced in a recent SS501 giant magnetoresistance (GMR) magnetic sensor, for which has never been applied. Vibrations on small ferromagnetic pieces disturb the Earth's magnetic field. These weak perturbations can be detected and measured over the assumed constant Earth's magnetic field, which is uniform over a wide area. A novel array…

Physicsbusiness.industryCapacitive sensingAcousticsDetectorElectrical engineeringMusical instrumentGiant magnetoresistancePiezoresistive effectMagnetic fieldlaw.inventionVibrationlawElectrical and Electronic EngineeringTuning forkbusinessInstrumentationIEEE Transactions on Instrumentation and Measurement
researchProduct

Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends

2018

This work focuses on the preparation of a piezoresistive sensor device, by exploiting an amphiphilic sample of graphene oxide (GO) as a compatibilizer for poly (lactic acid) (PLA)-Poly (ethylene-glycol) (PEG) blends. The presence of GO determined a high stiffening and strengthening effect, without affecting toughness, and allowed a good stability of mechanical properties up to 40 days. Moreover, GO endowed the materials with electrical properties highly sensitive to pressure and strain variations: the biodegradable pressure sensor showed a responsivity of 35 μA/MPa from 0.6 to 8.5 MPa, a responsivity around 19 μA/MPa from 8.5 to 25 MPa. For lower pressure values (around 0.16–0.45 MPa), inst…

Polymer-matrix composites (PMCs)Materials scienceOxideNanotechnologyCeramics and Composite02 engineering and technology010402 general chemistry01 natural sciencesSettore ING-INF/01 - Elettronicalaw.inventionchemistry.chemical_compoundEngineering (all)lawAmphiphileComposite materialInterphaseDynamic mechanical thermal analysis (DMTA)GrapheneGeneral Engineering021001 nanoscience & nanotechnologyPiezoresistive effectBiodegradable polymer0104 chemical sciencesLactic acidSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryRaman spectroscopyCeramics and CompositesGraphene0210 nano-technology
researchProduct